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I PREFACE

i The following Technical Report is an adaptation of an M.S. thesis

submitted to The University of Tennessee in August 1982. It is the

I result of an effort to go beyond the usual interpretation of a

diffraction field and to interpret simultaneously the effects of linear

Idiffraction and nonparallelism in terms of pulse echo amplitudes
Iobserved on an oscilloscope. It is a necessary first step toward a

more general interpretation which includes the nonlinearity of the

Isolid propagating medium.
Even in the linear approximation the eviluation of the amplitudes,

I and hence the attenuation, of pulsed ultrasonic waves in solids can be

complicated by a number of factors. Of those factors most often

considered, this report concentrates on extending our understanding of

jdiffraction and nonparallelism. A mathematical model for correcting

the echo height for the effect of a wedge-shaped sample is constructed.

i By using a unique coordinate system, the path of a multiply-reflected

ultrasonic wave is transformed into an equivalent unidirectional path.

Adiffraction correction then Is applied by numerically integrating

an improved version of the farfield solution to the diffraction

integral. This model is used to interpret data taken on a steel plate

I which has different facets ground over a range of angles between 0 and

0.01175 radians. Plots are given of corrected attenuation measurements

i 1made with circular ptezoelectric transducers having resonance frequencies

between 3 and 7 MHz.
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I A comparison is made between the present model and that of

Truell and Oates [J. Acoust. Soc. Am. 35, 1382 (1963)), which was

intended as an indicator of the necessity for applying a correction

i for nonparallelism. The present model corrects the first four echoes

for frequencies f < 6 MHz and angles y < 4 x lO"3 radians.

I The author wishes to acknowledge the contributions of the

following organizations:

The Canadian Armed Forces for their financial and administrative

I support;

The United States Office of Naval Research for providing the

i equipment, the laboratory space, and for use of the facilities at The

University of Tennessee Computing Center;

The Metals and Ceramics Division of Oak Ridge National

I Laboratory for providing the steel sample and for giving me the oppor-

tunity to work on nondestructive applications.

[ The author also wishes to express his appreciation to a few

special individuals. They are:

tas Dr. . A. Breazeale for his patience, and his dedication to the

task of giding this work and also for the benevolence shown by him and

his family;

I Dr. Jacob Philip and Mr. Jerry Latimer for their friendship and

many hours spent in giving technical advice;

I The personnel of the Ultrasonic Section of the Metals and

Ceramics Division of Oak Rid* National Laboratory for their cooperation

and genuine interest in helping;

I

=1L



I I

I Mrs. Maxine Martin for the expertise and dedication that she has

shown in the assembling and typing of the thesis.

Finally, he expresses his appreciation to his wife Line with a

I dedication in the French language.

I
I
I

[
r

[

I
I

-- -- • I " II I '--- .



g De'di cace

I i Line

I Nerci

Pour ces heures suppleimentaires
Que tu as passe
Acamnpenser

Pour mon trop i faire.

I Pour itre malgre' tout demeure
Une me're exemuplaire
Et une douce moitie'
Dont tout marl serait fier.

Pour avoir tout accepteI Si gracle'usement
Et si slmnpiement,
Que je n'al pas eu a' le demander.

I Aucun merci ne pourralt suff ire.

[ Serge

IIv

gu



I TABLE OF CONTENTS

i CHAPTER PAGE

I. INTRODUCTION ......... ....................... 1

II. THEORETICAL ANALYSIS. ................... 5

Wave Propagation Theory ....... .................. 5
Wave Attenuation ........ .................... 5

Definition of a, the attenuation parameter ... ...... S
The attenuation correction ...... .............. 6

The Diffraction Theory ....... ................ 7
The diffraction model ....... ................ 7
The pressure on the axis ......................... 10
The pressure in the farfield ............. 12
Average pressure on the receiver ........ ... 14

Geometrical Correction Models ................. .... 17
The Plane Wave Correction Model ..... ............. 17

The geometry of propagation in a wedged sample .... 17I The theory of Truell and Oates .. ............ .... 19
The average pressure on the receiver .... ......... 20

The Diffracted Wave Model ...... ................ 20
Model of the physical situation . ............ 21
Modification of the solution of the diffraction

integral in the farfield ..... ............. 21
The coordinate transformations .. ............ .... 23
The average pressure on the receiver .... ......... 31

The Correction for Geometrical Attenuation ... ....... 34

I III. EXPERIMENTAL APPARATUS AND PROCEDURE ..... ........... 36

V Purpose and Background .... .................. ... 36
Experimental Apparatus .... .................. ... 36
Electronic Components ....... .................. 36

System description .... .................. ... 36
System discussion ....... ................... 38

Transducer ........ ....................... 39
Structure ..... ....................... ... 39
Electrical circuit .... .................. ... 42

Sample ...... ......................... ... 43
Experimental Procedure .... .................. ... 45
Sample Characterization .................... .... 45

Angles measurements ....... .................. 45
Velocity measurement. ....... ................ 47

Attenuation Measurements .... ................ ... 50I
IV. RESULTS AND CONCLUSIONS ....... .................. 52

Experimental Results .... ................... .... 52

vi

I - II. -I .



I

I vii

CHAPTER PAGE

The Amplitude Pattern. .. .. .. .. . .. .. ....... 52
The Attenuation Parameter ...... ................ 52

The Diffraction Correction ... ................ .... 56
Application of the Plane Wave Geometrical Correction . . . 62
Application of the Diffracted Wave Geometrical

Correction .... ...................... .... 65
Conclusions ......... ........................ 69
Suggestions for Further Work ...... ............... 71

Receiver Directivity Factor ...... ............... 71
Correction in the Fresnel Zone ..... ............. 72
The Gaussian Transducer Model ..... .............. 72
Velocity Measurements ....... .................. 72

LIST OF REFERENCES ......... ........................ 74

I APPENDICES ...................................... 77

A. AN APPLICATION OF THE RECIPROCITY THEOREM .... ......... 78

B. A COMPUTER PROGRAM FOR CORRECTING ULTRASONIC
ATTENUATION DATA .... ...................... .... 82

C. PHASE CORRECTION FOR VELOCITY MEASUREMENTS .... ......... 87

D 0. THE RECEIVER DIRECTIVITY MODEL ...... ............... 91

E. THE GAUSSIAN TRANSDUCER ....... .................. 96

[ VITA .......................................... 101

III
[

I
I

I
1;



II

i LIST OF FIGURES

SI FIGURE PAGE

11-1. Geometry Used in Deriving the Radiation Characteristics
I of a Piston Source ........ .................... 9

11-2. The Shape of the Normalized Values of Pressure in a
Plane Normal to the Direction of Propagation (from
Mercier (1976)) .I..... . . . . . .. . . ... ... 11

11-3. Comparison of Pressure on Axis for PO = 1 (from1 Krautkramer (1977)) .... ................... .... 13

11-4. Functional &ehavior of 2J,(ka sine)/ka sine (fromI Kinsler et al. (1982)) ....... .................. 15

11-5. Directional Characteristic H(e) (from Krautkramer
(1977)) ......... ......................... 16

I 11-6. Propagation Path of the Center of the Disturbance . . . . 18

11-7. Schematic Representation of the Wavefront Showing the
Amplitude Distribution and the Relative Source and
Receiver Position after n Reflections ..... .......... 22

11-8. Inverse of the Average Pressure on the Receiver as a

Function of Normalized Propagation Distance ... ....... 24

11-9. Geometrical Relationship Existing for n = 1 ... ....... 26

11-10. Graphical Construction Showing the Geometrical Relations[ after Three Reflections ....... ................. 29

11-11. Definition of the Receiver Coordinate (x,y) in the
p'Z; Plane ..... ........................ .... 30

11-12. Definition of the Coordinate [p (x,y)]n in the
P'f; Plane ......... ........................ 32

111-1. Electronic Circuits Used for Acoustical Measurement. 37

111-2. Ultrasonic Measurement Setup Showing the Steel Plate,
the Transducer, and the Vise ...... ............... 40

111-3. Transducer Parts ....... ..................... 41

111-4. Geometry of the Wedged Sample ...... .............. 44

I vii



I

I ix

I FIGURE PAGE

111-5. Schematic of Optical Measurement Setup .... .......... 46

I IV-1. Exponential Decay Pattern at 6 MHz for 0 Wedge Angle . . 53

IV-2. Fluctuations in the Echo Pattern Observed at 3 MHz for
I y - 11.75 x 10-3 Radians ..... ............. .... 54

IV-3. Pulse Amplitude Pattern at 4 MHz for a Wedge AngleI of 11.75 x 10-3 Radians ....... ................ 55

IV-4. Apparent Attenuation at 4 MHz for Different Wedge
i Angles .................................... 57

IV-5. Apparent Attenuation at 7 MHz for Different Wedge
Angles .................................... 58

I IV-6. Attenuation at 3.34 MHz for 0 Wedge Angle .... ........ 60

IV-7. Attenuation at 6.00 MHz for 0 Wedge Angle .... ........ 61

IV-8. Attenuation at 4 MHz for a Wedge Angle of 11.75 x 1O
3

Radians Using the Truell and Oates Correction ... ...... 64

IV-9. Attenuation at 4 MHz for a Wedge Angle of 11.75 x 10
3

Radians Using Data Corrected for Diffracted Wave
Geometry ......... ......................... 66

IV-l0. Attenuation at 5.75 MHz for a Wedge Angle of 3.82 x 10
3

Radians Using Data Corrected for Diffracted Wave Geometry
and Reference Attenuation for y = 0 and f = 6 MHz . . . . 67

IV-11. Attenuation at 3.31 MHz for a Wedge Angle of 3.82 x 10
3

Radians Using Data Corrected for Diffracted Wave Geometry
and Reference Attenuation for y - 0 and f = 3.34 MHz . . . 68

A-1. Theoretical Position of Two Transducers Enclosed in a
Volume V ......... ......................... 79

D-l. Schematic Showing the Relative Position of the
Transducers S and S2 and the Incident Angle 8 of the
Incoming Plani Wave .......................... 93

D-2. Schematic Showing the Relation between Two Transducers
S, and S2 which Have Parallel Acoustic Axes ... ....... 95

I
I



II

I
I l ~CHAPTER I

i INTRODUCTION

The attenuation of ultrasonic waves is a physical phenomenon

I which has great significance in many wave propagation studies. Much

1 useful information about the internal structure of the propagating

medium can be derived from a correct interpretation of attenuation.

i The correct interpretation of attenuation, however, is a long-standing

problem. The usual approach to solution of this problem is to assume

I that the physical phenomena which produce attenuation make independent

contributions to the measured result. One then characterizes the

measured attenuation coefficient as a summation of coefficients result-

ing from (1) intrinsic attenuation (that resulting from viscous and

thermal losses in the propagating medium as well as grain boundary

I scattering); (2) attenuation resulting from diffraction; and (3) attenua-

tion resulting from a lack of parallelism between the ultrasonic source

and the receiver. This thesis is an attempt not only to point out that

1 (2) and (3) are not truly independent, but also to demonstrate how they

can be interpreted simultaneously.

1" In his Theory of Sound first published in 1878, Lord Rayleigh

(1950) gave the mathematical form of the diffraction integral. In

1886 Lommel published a solution of the same diffraction integral as

I applied to the propagation of light by utilizing the Kirchhoff approxi-

mation for Fresnel diffraction. The solution, given in the form of an

i infinite sum of Bessel functions, Is awkward to use (Gray and

I
I
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i Matthews (1931)). Huntington et al. (1948) published the first

i diffraction correction for propagation of ultrasonic waves by making a

numerical integration of the tabulated data of Lommel. Numerous

I authors subsequently have provided improvements of the numerical inte-

gration process, the latest having been published by Benson and

I Kiyohara (1974). Rogers and Van Buren (1974) obtained an analytical

solution of Lommel's diffraction integral. Their solution is applicable

to the transmission of sound between two discs of the same size which

are parallel to each other. However, the analytical solution has

limited utility in the present situation because it gives the result

I of integrating over a receiver area rather than the value of pressure

at a single point in the diffraction field.

II All the above models assume that the propagation medium is a

lossless liquid. Papadakis (1975) studied the propagation of ultra-

sonic waves in a solid and states: "The solution for fluids applies

Iadequately to isotropic solids as long as the transducer is bonded
adequately to one of a pair of plane parallel faces of a slab consider-

ably larger in lateral extent than the transducer diameter" (p. 154).

In all these studies the receiver and the source conveniently were

assumed to be parallel. It has been known for some time that measure-

ments of ultrasonic attenuation are seriously affected by nonparallelism

of the source and the receiver. In their review article Breazeale et al.

1 (1981) state "among the less easily evaluated errors are those arising

from . . . phase cancellation resulting from lack of parallelism of the

transducers, from material inhomogeneity, and from diffraction" (p. 68).

I
I
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i Truell and Oates (1963) studied the effect of nonparallelism of source

and receiver. Their study showed that the diffraction pattern observed

I in a sample of wedge angle y was modulated after n reflections by a

function of the form 2J1 ((2ka ny)/2ka ny). They then gave a mathematical

I treatment to explain this modulation phenomenon on the basis of phase

1cancellation of infinite plane waves. Truell et al. (1969) suggested

that the form of the function could be used as a means of predicting the

degree of parallelism required for a given value of ka to avoid the

modulation effect. They also showed that the model's ability to predict

Ithe shape of the modulation was much better at high frequency (85 MHz)

than at low frequency (35 MHz). Calder (1978) introduced a modification

to the Truell and Oates model by correcting for the Inhomogeneity of

I the sample. He applied his correction to a wedged sample and to a

hemispherical reflector. In his case the Truell and Oates model

I. significantly corrected for the modulation in the case of the hemi-

spherical reflection; however, it was not able to correct for the

modulation observed with the wedged sample.

IIn this thesis the Truell and Oates model is shown to be

inappropriate for the frequency range 3 to 9 MHz in wedged steel samples.

INext, the Truell and Oates model is modified by the removal of the
plane wave approximation. This procedure makes it necessary to define

the pressure at a point in the diffraction field. Then, the point

values of the pressure are numerically integrated over the receiver

area. Such an integration can be performed only after a definition

I of the relative position of the receiver and the displaced and rotated

I
mI
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I wave field has been made. An inherent characteristic of this procedure

is the lack of separability of the effects of diffraction and non-

S I parallelism of the sample surfaces. The result is an improved model

l I which is able to account for a number of experimental observations.

I
I
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i CHAPTER II

THEORETICAL ANALYSISI
A. WAVE PROPAGATION THEORY

1. Wave Attenuation

a. Definition of a, the attenuation parameter. If a pressure

I disturbance of the form P(t) = Poejwt propagates a distance Ax from a

point x0 to a point x, then the pressure measured at the point x will

j be of the form:

P(x,t) z P ej (wt-kax) (2-1)

I P~e

IAn expression for an attenuated wave is obtained by assuming that

the wave vector k is complex and given by:

k = k0 - ja (2-2)

where a is the attenuation coefficient which is assumed to be constant.

Equation (2-1) then becomes

P(x,t) = [e aAxI POe .(wt-kOa) (2-3)I
The bracketed term expresses the manner in which the attenuation

I coefficient a affects the amplitude values. If we now take the modulus

of Eq. (2-3), we obtain

I
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I Pmax(x) P Poe'cx • (2-4)

From Eq. (2-4), then, a can be expressed as

I
1 I (2-5)

or equivalently as

= logo x (2-6)
[mx

The unit of a in this case is db per unit of length of Ax,

II b. The attenuation correction. If one wants to correct for

attenuation, he must first examine the physical causes of this

phenomenon. In general, the causes of attenuation are divided into two

[categories: the intrinsic attenuation phenomena ai and the geometric

attenuation phenomena ag* These two categories are assumed to be

[independent of each other such that we can express a as:

a 0i + ag • *(2-7)

The intrinsic attenuation a, is a measure of the loss of energy

I of the pressure wave. In a solid which is reacting as a continuum most

of the intrinsic attenuation measured comes from the phase delay between

the density function and the pressure function. Therefore, in a given

homogeneous isotropic medium the total Intrinsic attenuation mt

I - in i
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experienced by a wave propagating at a frequency fO0 can be expressed,

at least in the linear approximation, as a constant mi. Then to obtain

a value of intrinsic attenuation one can first correct a measured

pressure value for geometrical attenuation and use this corrected

pressure in Eq. (2-6).

The geometrical attenuation phenomenon is the one that will be

studied in greater detail as it is significantly affected by many

geometrical factors such as parallelism of the faces of the solid and

diffraction which have been adjusted during the course of this

investigation.

2. The Diffraction Theory

a. The diffraction model. We will assume that a source of (
pressure disturbance behaves as a circular piston in an infinite rigid

baffle. Then the magnitude of the disturbance at any point on the

source can be described either in terms of maximum pressure PO or

maximum velocity U0 as:

P(t) = P0
ej ~t  (2-8)

U(t) - JUoejwt (2-9)

i where w is the angular frequency of the disturbance. If this

disturbance is now allowed to propagate into a lossless homogeneous

isotropic fluid, its radiation pattern can be described by the use of

classical wave theory. Using Huygens' principle we then approximate

the piston by subdividing the area into small point sources and use the*iI
- - -mI
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I additivity theorem to obtain the resulting effect of all these small

sources at a field point.

I Kinsler et al. (1982) give the radiation pattern of a small source

(of any shape)1 which is located in an infinite baffle as:

dP(Rt) o 1 _ dS-[J eJ(wt-kR) (2-10)

where

R is the distance from the center of the source to the field

point;

f PO is the medium density;

C is the velocity of propagation of the pulsation through the

( medium;

U0 is the maximum velocity of the surface;

JI k is the wave vector;

dP is the pressure value; and

dS" is the pulsating surface.

L The pressure at a field point, defined by the spherical coordinate

(Ro,e) shown in Figure 1I-1, is given by the integration of Eq. (2-10)

over S',the source surface. One then obtains the diffraction integral:

j PO CUo •J(wt 'kR)P(Ro'e't) " 2 S"- R dS" (2-11)

IAppendix A shows why for small sources the shape does not make
any difference to the radiation pattern.

m _ I l ll
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1 (Ro,e t)

I
IR

L Z
Figure 11-1. Geometry Used in Deriving the Radiation

Characteristics of a Piston Source.
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This integral also is referred to as Rayleigh's integral and it does not

have a closed form solution. However, a number of numerical integrations

of this integral have been made and the result of one of them is shown

in Figure 11-2.

b. The pressure on the axis. The pressure in the field along

the Z axis is one of the few quantities which can be analytically

obtained from the piston model without further approximation. From

Eq. (2-11):

j PO CUok j(rt) a ejk(r2+z2 )l/2
=~,~) 2 2rrdr (-2

T 0 (r2 + z2 )1/2

since:

r e-Jk(z2+r2 )1/2 = d e jk(z 2+r2)  (2-13)
(z + r)2U --

Then we obtain

P(z,O,t) =P CU0 ejWt [e-kz - e Jk(z2+a2 )l/2 (2-14)

The magnitude of this expression is the pressure on the axis Paxis:

Paxis " 2po CUoIsin kz[(l + (a/z)2)1/2 - 1) . (2-15)

When the value of z/a is much larger than ka, then Paxis simplifies to

an asymptotic expression Psph which is the spherically divergina wave

expected at large distances:
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sph O CU ka2  (2-16)

Psph(t) PO CU0 ka2 eJ (wt' kz )  (2-17)

A comparison of the values of P obtained for Eqs. (2-15) and (2-17),

I shown in Figure 11-3, shows that Psph does not converge to within 10%

of Paxis until a distance of twice the farfield distance zf is achieved.

The parameter zf is defined as the axial distance to the last maximum

f of the axial pressure and is given by Krautkramer (1977) as:

I zf = (4a2 + x2)/4x (2-18)

I where a is the radius of the source element and X is the wavelength of

the wave.

c. The pressure in the farfield. An analytical form of the

diffraction integral can be obtained by noting that for R >> a the

I value of R is adequately approximated by: (1) R0 in the denominator

and (2) by R0 - r sinecos* in the more sensitive phase term. Then

[ Eq. (2-11) can be integrated to give:

aPO CU (t-kR O) 2Jl(ka sine)1

P(R•t) u e ka (2-19)

l Then from Eq. (2-16)

0)F2Jl(ka sine). j(wt-kRO)
P(R 0,e,t) Psph(R)L ka sine e (2-20)

iI
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where the spherical dependence P sph(Ro,t) is expressed by Eq. (2-11)

when Z, the axial distance, is equal to RO. The remaining term includes

all the angle dependence and is commonly referred to as the directivity

g function. A plot of [2Jl(ka sine)/(ka sine)] is shown in Figure 11-4. It

is important to note that in the farfield the angle 6 gives the approxi-

I mate direction of propagation of the wave on the wavefront, i.e., along

the radius R0 and that the function Hi(e i) becomes much more sensitive

to variations of ei as the value of the parameter ka is increased. The

polar diagram obtained from Krautkramer (1977) and included in

Figure 11-5 clearly shows this relationship.

d. Average pressure on the receiver. In a pulse echo system

one can obtain the average pressure on the receiver by integrating

Eq. (2-11) over the receiver area. Rogers and Van Buren (1974) have

solved analytically this problem using the Fresnel diffraction

approximation and obtained a diffraction correction parameter D given

by:

D = 1 - e-J(2r/S)[ 0 (2n/S) + j Jl(2r/S)] (2-21)

I where S =2irZ/ka 2is the normalized propagation distance.

In the Fresnel approximation one replaces R in Eq. (2-11) by Z

in the denominator and by Z + (r( + r'4 - 2rr'cos *')/2Z where the
prime coordinates are the source coordinates. (See Gray and Mathews
(1931).)

I

I
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I Figure 11-5. Directional Characteristic H(e) (from Krautkramer1 (1977)).
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I B. GEOMETRICAL CORRECTION MODELS

1. The Plane Wave Correction Model

As will be shown in the results, significant deviations from the

I diffraction model are observed in the echo train of a wedged sample.

Truell and Oates (1963) suggested a model to explain the deviation from

the diffraction pattern based on the geometry of wedged samples. This

model will be described here.

a. The geometry of propagation in a wedged sample. Let us

I assume that a sinusoidal disturbance of frequency fo originating at a

time to and having radial symmetry about an origin 0, begins propagating

along the normal to the upper surface of a wedge of angle y as shown in

Figure 11-6. At any time t > t0 the center of symmetry of this disturb-

ance is located along the axis of propagation of this wave; i.e., at the

Icenter of the wavefront. Now, consider the displacement of the center

of the wavefront of the disturbance as the wave is multiply reflected

within the sample. This displacement occurs along a path described by

I a ray folded by reflection between the faces of the wedge. At every

reflection from the lower face the relative angle yn between the upper

[ surface and the normal to the propagation direction of the wave is

increased by 2y. After n reflections from the lower surface, the

I relative angle yn is given by:

I y 2ny. (2-22)

Furthermore, it is evident that as the wave propagates its symmetry

axis Z will wander away from the receiver origin 0.

I
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I b. The theory of Truell and Oates. Truell and Oates (1963)

gave a theoretical model to explain the rapid fluctuation of amplitude

observed in the echo train of a circular piezoelectric receiver when a

g wedged sample is used. They assumed that the wavefront was effectively

plane and that the fluctuations in pulse height could be accounted for

by the variations in the receiver signal that resulted from phase

cancellation of the wavefronts across the receiving transducer.

Assuming the effective translation of the receiver is negligible, then

j the pressure function at a point (Ro,0 ,t) after n reflections from the

lower surface of the wedge can be expressed as:

I P(ROSIe,t) n = e J{wt-k[2nL-xsinyn] (2-23)

[This expression must be integrated over the circular receiver to obtain
the average pressure (P)n

e JWt a 2 2 1/2 -jk(2nL-xsinyn)
(P)n = i.2-]a 2(a x e dx (2-24)

The result of this integration gives:

S)n = sin(wt - 2knL) H(Yn ) (2-25)

I where

I

Ii
,-

i m I l I I I I II l l. .. . .. .... "T 
' ' ' ' "
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2Jl[ka siny n]H(Yn) = kas.y (2-26)
n ka slly n

The form of this function is given by the magnitude of the directivity

function defined in Eq. (2-20).

c. The average pressure on the receiver. In the Truell and

Oates model, the function obtained in Eq. (2-25) is assumed to modulate

the exponential diffraction pattern such that both effects can be

corrected for separately. The expression of the average amplitude on

the receiver is then given by the multiplication of the diffraction

correction parameter D given by Eq. (2-22) and H(yn). Therefore, the

magnitude of the average pressure P is given by:

J= DH(yn) . (2-27)

The range of 1P1 may go from 0 to 1 and conversely the geometrical

attenuation according to the plane wave model goes from -- to 0.

2. The Diffracted Wave Model

As will be seen in the Results section, the plane wave model

which assumes independence of the diffraction and wedge geometry

correction does not satisfactorily describe the echo train observed.

A new approach combining both the diffraction theory and the description

of the phase cancellation will be developed for the wedge sample

geometry.
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a. Model of the physical situation. If one examines the

diffraction model given in Eq. (2-11) and depicted by Figure 11-2

(p. 11), one realizes that assuming a plane wave with a constant

pressure distribution is a very crude approximation of the physical

situation. Furthermore, this description is made in relation to a

fixed propagation axis. However, as is obvious from Figure 11-6, the

propagation axis is rotated and translated in relation to the source/

receiver element as the wave is multiply reflected in the sample. An

example of an analogous situation for a unidirectional propagation path

is shown schematically in Figure 11-7. Using this physical model we

will define the average pressure resulting on the receiver when the

propagation distance is larger than the nearfield distance. First, a

modification of the farfield approximation will be done to improve its

convergence. Second, a coordinate transformation system will be

defined such that the unidirectional diffraction theory can be applied

to the propagation in a wedge sample. Third, an average pressure will

be obtained by numerical integration of the pressure function over the

receiver area.

[: b. Modification of the solution of the diffraction integral in

the farfield. A study of the convergence of the farfield approximation,

[given in Eq. (2-20), to a numerical approximation of the diffraction

integral was made by Rose (1975). He concluded that the directivity

function (2J1(u)/u) seemed to converge much more rapidly to the shape

of the numerical values than the value of Psph to the value of pressure

on axis Paxis* In order to obtain a more rapid convergence of the

s | I
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I solution, the value of Psph in Eq. (2-20) is replaced by the value of

I Paxls from Eq. (2-15). The new equation for the pressure is then:

I P(Ro,e,t) = Paxis(Ro)[2Jl(kaslne)/(kasine)Je t . (2-28)

A numerical integration of this integral was done over a receiver

of 1.27 cm radius using the IMSL function DBLINT which is a cautious

J Romberg quadratic numerical integration process. This result is com-

pared with the closed form analytical expression of the diffraction

Iintegral given by Eq. (2-22). Figure 11-8 shows the value of Eq. (2-28)

as a means of improving the convergence of the expression of the

pressure in the farfield.

I The normalized plot of average pressure shown in Figure 1I-8 is

then used to extend the validity of the numerical integration of

Eq. (2-28) to points having a propagation distance smaller than three

times Zf. A correction is then applied to all the average pressure P

subsequently obtained by integrating this equation over the receiver

I surface. The correction is applied by multiplying the average pressure

by the ratio of the average pressure obtained from Rogers and Van Buren's

(i solution to the average pressure obtained by integrating Eq. (2-28) for

a piezoelectric element of 1.27 cm radius at 4 MHz. This radio was

verified to be the same to within less than 1% whether the radius is

1 0.635 cm or 1.27 cm or the frequency 2, 4, 6, or 8 MHz.

c. The coordinate transformations.

The new coordinate system. To define a new coordinate system

I it will be necessary to define an Imaginary source of origin 0 located

I"n
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2.2 Analytical Solution (Eq. 2-21)

0 Farfield Solution (Eq. 2-20)

2.1 e Modified Farfield Solution (Eq. 2-28)
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Figure 11-8. Inverse of the Average Pressure on the Receiver as a
Function of Normalized Propagation Distance.
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I along the axis of symmetry Z of the wave such that an equivalent

i unidirectional path can be associated with the wave. In this system

the axis Z' is defined to be coincident with the axis of symmetry and

l the direction of propagation of the wave after n reflections from the

lower face. From symmetry consideration it will then be mathematically

I simpler to use a cylindrical coordinate system described by the three

i orthogonal axes p;, 0;, and Z;.

Position of the imaginary source origin 0'. The radial

I coordinate [p'(OO)]n of the center 0 of the receiving element is

obtained by considering the right triangle, formed by the intercept of

I the Z axis, the Z; axis and the distance [p'(O,O)] n , in Figure 11-9.

The angle between the normal to the surface and the axis Z; is defined

by Eq. (2-22) as Yn" Its opposite angle, defined by the axes Z and Z;,

must also be yn since Z is normal to the surface. Then we have

I P'(OO)]n = n L sinyn , (2-29)

[ where L is the sample length measured at the center of the receiver.

The angle, defined by the distance Cp'(OO)]n , and the surface must be

i equal to yn since its two sides are respectively perpendicular to the

i normal to the surface and to the Z' axis. Then its bisectrix will cut

the Z; axis at a point [Z' I . Consider now the triangle formed by
parI the bisectrix, the Z and the Z; axis. In this triangle the angle

opposite to the Z' axis side is given by

I A w2 - n 2 . (2-30)

ti

-I .... ...- ". . -
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1 Since the angle B opposed to the bisectrix has been defined previously

as Yn' then the angle C opposite to the Z axis is given by:

r- -A -(2-31)

or

o Y n "(/2 - yn/2) = /2 - yn/2 (2-32)

Since C equals A, then their sides are equal and since the Z axis side

I is equal to n x L, then the Z axis side is also equal to n x L. This

means that the propagation path of the wave from 0 to [Z ar]n is given

by:

[Z I = n x L + n x L = 2 n L. (2-33)

I The magnitude of [Z ar]n is the propagation distance of a wave between

I parallel faces after n reflections from the lower surface.

Now let us consider the right triangle formed by the distance

[p'(OO)]n , the bisectrix and the Z axis. The Z axis side which we

will call AZ', is given by:

Az" Z [p(OO)jn tan(yn/2) . (2-34)

The propagation path from 0 to [Z(OO)]n is given by:

m £Z'(oo))n = EZ~arln - AZ' (2-35)

Then by combining (2-33), (2-34), and (2-35), we obtain the [Z'(0,0)J n

coordinate as:

! I
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I [Z-(010)n = n x L [2 - sin(yn) tan(yn/2)] (2-36)

The relative positions of the imaginary source origin O% and the

receiver origin 0 are now defined by Eqs. (2-29) and (2-36). This

Igeometrical relationship which has been shown to be exact for the first
reflection is assumed to be exact for n reflections. It has been

verified graphically to be exact for at least four reflections for

I different angles y ranging from 10 to 5°. An example of such graphical

construction is shown in Figure Il-lO.

ICylindrical coordinate of a point on the receiver surface.
Consider the projection of the upper surface in the p' Z' plane cut

along the X axis as shown in Figure ll-11. The X axis, the parallel to

the p axis passing by the poing (0,0) and the parallel to the Z axis

passing by the point (x,O) form a right triangle of respective side x,

xcosyn and xsiny Then the intercept on the Z axis of the point

(x,O) is given by

[Z'(xO)]n = [Z'(0'O)]n - xsinyn " (2-37)

The points (x,y) and (x,O) must have the same Z value since y

is antiparallel to ",. Therefore, Eq. (2-37) can be rewritten as:I
[Z,(x,y)]n = [Z'(00)]n - xsinyn . (2-38)

The intercept of the point (x,O) on the p' axis is similarly given by:I
[p'(x,O)) = [p'(,O)n + Xcosyn

I
I =-~-
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I Let us now consider the pn *n plane cut along the parallel to the y axis

formed by the point (x,O) and (x,y) as shown in Figure 11-12. In the

right triangle formed by the three points (x,O), (x,y), and [O,Z'(x,y)]n ,

I the distance between the last two points is [p(Px,y)] n and is given by:

I [vp(x.Y))n = [[P,(xO)]2 + y2 )I/2 . (2-39)

I We can now convert x and y in terms of r and * by noting

that

I
x = r COS*i (2-40)

y = r sin . (2-41)

This means that we can define the diffraction field parameters Rose in

terms of r and * by using the following identities:

I2 2 2(R0) = {[p-(r,*)] + [Z'(rw)]n I  (2-42)

I (e)n tan"1 [pr,In (2.43)[PZ(r,*)]n

d. The average pressure on the receiver. From the modified

I expression of the pressure P at a point in the field expressed by

Eq. (2-28) and the relationship between RO , e and (p',Z')n defined by

Eqs. (2-42) and (2-43), we can express the pressure at a point (p',Z')n

I as:

I
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SP(0. z,.t)n = axis(RO(P- Z')n)E2Jl(kaslne(pz')n)/kasine(pZ')nl

e(WtkR0(p ,z)n) (2-44)

By using Eqs. (2-38)-(2-42) we obtain p- and z' as a function of r and

*, the receiver coordinates. The average pressure n(t) is obtained by

I integrating Eq. (2-44) over the circular receiver area of radius a.

This gives:I

Sn(t) 2 a iP~r']* e J'rt-kRI.I ] r dr d* . (2-45)

Since in the attenuation study we measure the maximum pressure, we need

the magnitude of Eq. (2-45). Using the identity

[ eje = cose + j sine, (2-46)

[Eq. (2-46) becomes

Pn(t) -a f0  IP[r,*]n{cos[wt - kRo(ri)]

[+ j sin[wt - kRo(r,*)] Ir dr de . (2-47)

Since we need only the real part, then

I P~~(t) - -12 ff r)Icst a kR0(r,vi)jr dr dip (2-48)
Int) 7 fo foj ro]I cs w

I
I

;. 1
I :--- - .. . ... .. - -- - ___-__- _ _ '.. .._ "__ i
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I Since cos(A-B) is equal to cosA cosB + sinA sinB, then

2 a
(t 1 2i f cOst JfPr,*IncoskRor,*'r dr dip

i =ra 0 Jo

i + sinwt 2fa P[r,*InSinkRo(r,*)r dr dip) (2-49)
0o 0

j These two integrals can now be evaluated numerically such that

Eq. (2-49) becomes

Pn t - (ia 2)_ {coswt + sinwt f2 l (2-50)

The magnitude of Pn(t) is given by

I P In = [na 2 2 1 + f2
2 1 /2  (2-51)

According to the diffracted wave model, the parameter IPIn then

[represents the maximum average pressure impinging on a circular trans-
[ mitter/recelver when a pressure wave subjected only to geometrical

attenuation and of a magnitude of 1 is reflected n times from the lower

I face of a wedged sample. The range of IPIn goes from 1 to 0 and the

corresponding range of ag (the attenuation due to geometrical attenua-

tion) goes from 0 to -.

3. The Correction for Geometrical Attenuation
An amplitude correction factor (CG)n is defined as the ratio of

the magnitude of the average pressure felt on a receiver of radius a

I !when (1) an infinite plane wave is impinging normally on its surface
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l ( =1) to (2) the situation described by either Eq. (2-51) or

(2-27).

(CG) (2-52)

I I n

Then after n reflections from the lower face of a wedge the magnitude

I of a measured average pressure IPIn can be corrected for geometrical

effects to obtain a corrected average pressure tPcIn .

IPcln = iPin x tCGI n . (2-53)

Equivalently, JPc'n is the magnitude of an infinite plane wave

propagating normally to the receiver. The pressure P(t) in such a wave

is given by:

P(t) = Pcine (2-54)

where R o(OO) n is the distance from the center of the imaginary source

n to the center of the receiver (0,0).

The geometrical attenuation correction process described in this

section is coded in FORTRAN 10 language and included in Appendix B.

IThe program calculates the attenuation between the first and the nth

corrected echo of a given pulse echo setup specified by: (1) the

velocity V of the ultrasonic wave in the sample, (2) the source radius

I a, (3) the frequency of the piezoelectric crystal f, (4) the non-

parallelism angle y, (5) the sample length L, and (6) the relative

amplitude of the voltage from the piezoelectric crystal after n

i reflections A(n).

I
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I CHAPTER III

i EXPERIMENTAL APPARATUS AND PROCEDURE

A. PURPOSE AND BACKGROUND

The purpose of this investigation is to gain insight into the

m propagation of ultrasonic waves in a wedged sample. Preparatory efforts

were concentrated in three areas: sample definition and characteriza-

tion; design of electronic setup for transmission and reception of

l electrical signal; design of a transducer for coupling of ultrasonic

waves and electrical signal.

B. EXPERIMENTAL APPARATUS

1. Electronic Components

ia. System description. The block diagram of the electronic

system is shown in Figure I11.1. A variable frequency oscillator (VFO)

is used to generate an RF signal of a given frequency. This signal is

I then fed into a frequency counter and a gated pulsed amplifier. The

pulsed amplifier sends out amplified pulses of this RF signal, at a

I specified pulse repetition frequency (PRF), to the diode expander. The

diode expander eliminates undesirable low amplitude secondary pulses by

the use of Zener diodes. The signal is then fed into a decoupler

i limiter. This decoupler sends the signal to the receiver and to the

transducer and limits the amplitude of the signal fed to the receiver

I to avoid saturation of the receiver amplifier. The transducerj 36 U

mo
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I transforms these single frequency pulses into longitudinal pressure

g waves of ultrasonic frequency corresponding to the frequency sent by

the VFO. As the wave propagates, an echo is eventually reflected back

I onto the transducer where the piezoelectric element transforms this

pressure wave back into an electrical output having the frequency of the

I original signal, but of much lower amplitude. This echo is then retrans-

mitted by the decoupler limiter to the receiver. The receiver contains

a wide band (1 to 90 MHz) amplifier which can amplify received RF signals

Sby up to 20 decibels. This signal is then rectified and can be amplified

by up to 70 decibels by the second stage of this receiver. The rectified

and amplified transducer response is then fed into the boxcar integrator

I and displayed on the oscilloscope. The position of that gate relative

to the signal indicates the part of the signal that is averaged out and

measured by the boxcar integrator. The synchronization of the pulser-

receiver-boxcar integrator system is ensured by triggering all these

Ielements from the pulser Internal trigger. The oscilloscope is then

triggered from the boxcar delayed trigger output.

b. System discussion. Pulse operation was selected over

Icontinuous wave for its superior immunity to cross-talk interference.
Pulse-echo was selected over through transmission to minimize system

alignment error. The need for accurate frequency measurements and

f short pulse length suggested the use of a VFO coupled to a gated

amplifier rather than an integrated oscillator-pulser-receiver unit.

J As mentioned by Truell et al. (1969), this type of setup allows for

excellent sensitivity to change in amplitudes for all values of
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I attenuation. A limiter is built into the receiver input; however, to

avoid partial saturation of the receiver amplifier it is still necessary

to use an external decoupler limiter. A diode expander is used to

I eliminate pulses of low level energy which appear immediately after the

collapse of the main RF pulsesI and last long enough to affect the

m first two returning echoes. Terminators of 93f impedance are used to

provide impedance matching between the pulser and the transducer.

2. TransducerI
a. Structure. A quartz, x-cut, crystal is used as a

Ipiezoelectric element for the generation and reception of the ultrasonic
wave. As discussed in Krautkramer (1969), one of the chief advantages

of quartz crystal over ceramic crystals such as barium titanate or

[lithium niobate is its mechanical strength which was necessary to allow
for pressure application of the crystal on the sample. This pressure

r is applied by the use of a vise pressing on both the sample lower face

and the transducer brass housing at the same time, as can be seen in

Ii Figure 111.2. A photograph of the transducer parts is also shown in

[Figure 111.3. The transducer parts were originally designed to be used

with different types of immersion transducers [see Scott (1975)]. The

main brass housing is maintained by the vise on a lucite crystal housing.

This crystal housing is of the form of a ring with the upper side flat

Iagainst the brass housing and a depression on the lower side. Thisi
1This effect is generally caused by accumulation of low level

piezoelectric energy in the ceramic capacitor of the oscillator circuit,
which is coupled to the load after the collapse of the RF pulse.

iI
' , , , , m m .....--- -
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I
I
I
i

i . i, . .
1 2 3 4 10 cm

I
I

Figure 111-3. Transducer Parts. Top row, left to right; lucite
crystal housing ring, lucite cylinder housing, contact spring, contact

icylinder. Bottom row: main brass housing.

I

II
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depression has an inside radius 1 nn smaller than the crystal radius and

an outside radius of about the size of the crystal so that the crystal

I can be inserted in this depression. Since the depth of this depression

is smaller than the thickness of the crystal, the pressure applied on

the housing is uniformly distributed on a 1 mm ring at the rim I of the

crystal. It was necessary to use pressure and wring the crystal on the

surface for two main reasons. First, it was a simple yet efficient way

Ito ensure parallelism between crystal and sample faces. As pointed out

by Truell et al. (1969), "ordinary bonding techniques do not necessarily

provide sufficiently good control over parallelness" (p. 120). Further-

more, the effect of nonparallelism of sample faces is almost impossible

to differentiate from the effect due to lack of parallelism between the

crystal and the sample faces. Secondly, to wring the crystal on the

surface is a very efficient way to damp the crystal and avoid the "ring-

ing" effect described by Krautkramer (1977). In this case the cohesive

force between the sample and the crystal allows the sample itself to act

as damping material. This negates the need for rubber backing, the

j usual damping material, which causes a significant decrease of crystal

sensitivity.

b. Electrical circuit. The electrical signal from the decoupler

I enters at the BNC connector of the main housing. It is then fed through

the central spring loaded retractable connector. This connector is in

1 By applying the pressure at the rim of the crystal rather than
at the center, uneven loading of the crystal was avoided as well as
unnecessary loss of sensitivity to returning echoes.I

I



I
1 43

contact with a brass cylinder. This cylinder can move up and down

I within the lucite cvlinder housing which fits into the center of the

I crystal housing ring. The cylinder is spring loaded by a central

connector, located inside the brass housing, so that it stays in con-

tact with the electrode attached to the surface of the crystal.

Two types of electrodes are used: gold and silver.1 The electrical

circuit is then completed by connecting the lower face of the crystal

to the brass housing. This is achieved by connecting the sample to the

brass housing using a brass connector.

3. Sample

The sample used is a plate of high carbon steel. This material

was selected for its known characteristics of: isotropy, low attenuation

coefficient from 2 to 5 MHz, electrical conductivity and machinability.

The plate geometry is necessary to eliminate side effects which can

easily be confused with nonparallelism effects as noted by Truell et al.

(1969), and to facilitate machinability of specified angles.

The plate was first ground to ensure parallelism of upper and

lower faces and to eliminate surface defects larger than 1 x 102 cm

(this represents about one-tenth of the wavelength at 6 MHz). The upper

I plate was then ground in facets of approximately 3 cm in width. A

I drawing showing the approximate geometry and the coordinate system used

is shown in Figure 111.4. The z direction corresponds approximately toI
IA gold electrode was plated on the entire (1.27 cm-radius) crys-

tal surfaces. For the 7 MHz crystal only, a 1.14-cm partial aluminum
electrode was attached by a grease couplant which was squeezed as thin
as possible. Such partially-plated transducers have been studied by

I Papadakls (1975).II _ _ _
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I the propagation direction of the echoes, the y direction corresponds to

the width of the sample and the -x direction corresponds approximately

I to the direction of lateral displacement of the propagating wave. As

we go along the x direction, we note an increase of the relative angle

between the upper facets and the lower face. This ralattve wedge angle

I (y) increases from 0 to 45 minutes by increments ranging from 20 seconds

to about 15 minutes. The width Wn of the facets ranges from 3 to 5 cm.I
C. EXPERIMENTAL PROCEDURE

1 1. Sample Characterization

I a. Angles measurements. The angles between the lower face and

each facet is evaluated by using a collimator and two reflectors as

shown in Figure 111.5. The collimator and the first reflector are

jpositioned such that the cross hairs' image coming from the lower face
reflector is coincident with the micrometer cross hairs. The micrometer

I cross hairs' position is noted. The second reflector is now positioned

1! at the edge of the facet of the upper face to be measured and the

micrometer cross hair positioned to be coincident with the image from

[this upper face reflector. Since both reflectors have parallel and flat

faces and have one or part of one of their faces wrung onto the sample,

Ithe wedge angle (y) between both faces is given by:

I n&Ax/f)
Y= 2

I

I.
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I 2-y

Collimator
I f

I Y
Upper FaceT

I Figure 111.5. Schematic of Optical Measurement Setup.
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i where

w r y -wedge angle;

I f = focal length1 of the collimator 33.23 nu;

tx = distance between the two image positions along the x axis.

I The distance Ln is the sample length measured between the lower

end and the upper facet n. Four measurements were made at each facet:

Yn at both edges of the sample (y = 0 cm and y = 10.5 cm) and Ln at

I about 3 cm from either edge of the sample (y = 3 cm and y = 7 cm). The

position of y for measurements of Ln correspond approximately to the

I position of the center of the transducer. The result of these measure-

ments is shown in Table III.1.

b. Velocity measurement. The measurement of velocity is made

Iby using a method analogous to the long pulse technique described by

McSkimin (1950). First, the facet used for measurements is thoroughly2

cleaned with acetone. The crystal is then positioned at the center of

this facet on a drop of couplant3 squeezed between the crystal and the

sample to ensure a good mechanical coupling. The transducer housing

1The value of f, the focal length, was measured using the
Newtonian method described by Palmer (1969).

2The cleaning is extremely important, as it prevents lack of
parallelism or bad coupling due to the presence of dust particles.

3After many trials, nonaq stopcock grease was selected as
couplant. Its chief advantage is that when pressure was applied, an
even and very thin layer of couplant was formed. This permitted to
wring the crystal very easily on the sample and the ultrasonic trans-
mission properties of this coupling were excellent. Another advantage
is that the crystal could afterwards be easily removed by sliding it to
the edge of the sample.

<I
.1
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I
I TABLE III.1

SAMPLE GEOMETRY DATAa

Iyn (milllradlans)b Ln (cm')C

I y= 0.0 c y =1O.O cm - 3.0 cm y 7.0 cm

1 0.14 0.14 2.4845 2.4845

1 2 0.11 0.19 2.4855 2.4855

3 0.00 0.00 2.4856 2.4865

1 4 0.27 0.16 2.4860 2.4865

j 5 0.28 0.00 2.4860 2.4865

6 1.60 1.62 2.4845 2.4850

7 3.82 3.87 2.4773 2.4775

8 8.75 8.07 2.4563 2.4570

9 11.64 11.75 2.4243 2.4280

aThe variations of Yn and Ln observed along the y direction were

caused by machining problems.

- bAccuracy of the measurements, ± 3 x 10-2 milliradians.

CAccuracy of the measurements, ± 5 x 10 5 cm.

I

I,
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i is then mounted on the crystal and the pressure slowly increased by

i tightening the vise. During this operation the RF pulse rather than the

boxcar integrator gate position is monitored on the oscilloscope. (This

connection is shown as a dotted line on tie block diagram of Figure 111-1,

P. 37.) When the RF1 and rectified pattern, as seen on the oscilloscope,

I show no signs of distortion and when increasing the pressure does not

i improve the pattern, the boxcar integrator gate position indicator out-

put is reconnected to the oscilloscope. At this point the transducer

J setup is complete and the measurement procedure is started.

The exact fundamental frequency of the crystal is first evaluated

Iby changing the frequency on the VFO until minimum attenuation of the

last echoes is observed. The frequency is then read on the frequency

counter. The length of the pulse is increased until overlap of success-

[ive echoes occurs. The frequency of the VFO is then changed by about

I MHz on either side of the crystal fundamental frequency (f ). As the

Ifrequency changes, interference minima and maxima are observed. The

[gate of the boxcar integrator is positioned at the overlap of the
second and the third echo. The number of minima between the highest and

[ the lowest frequency is then noted and the values of these two fre-

quencies are read from the frequency counter. The velocity v is given

I by:

v a2 x Lx Af

1For the velocity measurements the RF was set at 4 MHz which was
approximately the fundamental frequency of the crystal used for

m measurements.

_ _ _ _
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where L is the sample length and Af is the change in frequency between

two "in phase" conditions of the second and third echo. To improve the

accuracy of the velocity value 21 sets of measurements of about 15

minima each are taken. The average velocity (;) obtained is 0.5840 cm/

Psec with a standard deviation of 0.5%. An approximate calculation of

the effect of the phase change caused by the relative magnitude of the

crystal and the sample mechanical impedance is shown in Appendix C.

The result is that this correction in this case is negligible.

2. Attenuation Measurements

The procedure used for attenuation measurements is the same as

the one used for velocity measurement up to and including the fundamental

frequency determination. The range of usable frequency is 3 to 9 MHz.

The frequencies used are all higher than 3 MHz to eliminate two problems.

First, an impedance mismatch between the pulser and the transducer

(this mismatch is an inverse function of the frequency); and second, an

increasingly difficult mechanical coupling of the crystal to the sample,

l[ as the thickness of the crystal is increased. No frequencies higher

than 9 MHz can be used as the increase of attenuation of the ultrasonic

wave in the sample prevented measurement of a sufficiently large number

[of echoes.

Once the resonant frequency is defined, the pulse parameters are

[ adjusted to give pulses and echoes with minimum distortion (flat top)

and which show no sign of interfering with each other. The width of the

I gate is then set so that it could cover only the flat top part of any

echo. The first echo is then set at a given reference level
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1 (2 or 5 volts) and all the other echoes' amplitude measured by the

boxcar integrator. The reference setting is checked regularly to

I ensure the validity of the relative amplitude measurements. The trans-

ducer and the crystal are then removed and the measurement repeated on

i another facet.

I
I
I
I
1

I
I
I

K
I
I
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I CHAPTER IV

I RESULTS AND CONCLUSIONS

A. EXPERIMENTAL RESULTS

j 1. The Amplitude Pattern

A series of amplitude measurements was made in accordance with

Ithe procedure described in Chapter III. These measurements were made

for 34 different combinations of four parameters: (1) frequency (f),

1(2) wedge angle (y), (3) sample length (L), and (4) radius of the

fpiezoelectric element (a).
Figure IV-l shows an example of exponential decay pattern

observed on the CRO. These patterns were observed when the wedge angle

was small enough and the frequency low enough. In other cases in which

the frequency was high enough and the wedge angle large enough signifi-

cant fluctuations about the exponential decay patterns were observed.

A photograph of one of these fluctuating amplitude decay patterns, as

[seen on a CRO, is shown in Figure IV-2. A plot of such fluctuating

amplitudes is shown in Figure IV-3.

2. The Attenuation Parameter

The attenuation parameter a is the quantity that is modified in

the course of this study to bring it closer to the ultimate goal ai.

The parameter a is given by Eq. (2-6):

I 20L- logo(M-)5
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I Figure IV-2. Fluctuations in the Echo Pattern Observed at 3 MHz
for y = 11.75 x 0-3 Radians.

I
I
I
I
I



55

| A

1.0 x

I
I
1 0.75

I

0.50

I
I
I

0.25I
I I

II

I ,I I . U I . _

0 1 2 3 4 5 6

I I Echo Number

* Figure XV-3. Pulse Amnliltude Pattern at 4 MHz for a Wedge Angle
* of 11.75 x 10-J Radians.



56

i In our study we will use PO as the amplitude of the first measured echo

and P(x) as the amplitude of the nth echo. Then Ax, the propagation

path from echo 1 to echo n, is given by:I
m Ax = (Ro)n - (Ro)1

where (Ro)n is the distance between the center of the receiver and the

I source after n reflections and is given by Eq. (2-42). Values of a are

calculated by the computer program in Appendix B and are given by the

variable DBMP. When we use the uncorrected data, this parameter

represents the apparent attenuation. Some plots of apparent attenuation

versus n obtained at 4 MHz and 7 MHz for various wedge angles are

j shown in Figures IV-4 and IV-5. The plots show that (1) the apparent

attenuation is a strong function of the wedge angle and the echo

'I number; (2) for higher frequency the attenuation parameter becomes

sensitive to smaller variations of wedge angle and echo number; and

(3) the echo trains exhibit both variations (monotonic increases) and

I fluctuations (somewhat periodic changes).

I B. THE DIFFRACTION CORRECTION

I The diffraction correction defined by Eq. (2-21) can be applied

to amplitude values obtained on facets with zero wedge angles. A

corrected attenuation value can then be obtained by using these

corrected amplitude values in Eq. (2-6). This corrected attenuation

l is evaluated by the computer program in Appendix B and is given by the

I variable DBCD. A plot of both the apparent and corrected attenuation

I , -. . .. ,.
• el II
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I Figure IV-4. Apparent Attenuation at 4 MHz for Different
Wedge Angles.
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Figure IV-5. Apparent Attenuation at 7 MHz for Different
Wedge Angles._
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j as a function of the echo number for data taken at 3.34 MHz is shown

In Figure IV-6. A similar plot for data taken at 6 MHz Is shown in

I Figure IV-7. The plots show that the corrected attenuation has a

smaller magnitude than the apparent attenuation. For the first two

echoes at 6 MHz and for the first six echoes at 3 MHz variations of

I apparent attenuation are larger for smaller frequencies than for larger

frequencies in contrast with the effect of the change in wedge angle.

Ii (The change in wedge angle resuited in larger variations for higher

frequencies.) These variations are corrected for by the diffraction

correction and a reference attenuation is plotted by taking the average

I of these first few corrected echoes. Dotted lines giving the reference

attenuation are given in Figure IV-6 and succeeding figures.

I Deviation of the data from the reference attenuation for the

later part of the echo train cannot be explained by this correction

I model for two reasons. First, even though the approximations of the

I model should be better and better as n increases (Rogers and Van Buren
(1974) report an accuracy of at least 0.6% in the Fresnel zone for the

range of values of ka used here), the deviation of the corrected

attenuation from the reference attenuation becomes larger and larger

I as n increases. Second, in contrast with the prediction of this

i correction model, th2 deviation of the attenuation data from the

reference attenuation is larger for high frequency than the deviation

I of the data observed for low frequency. The possibility of having

inhomogeneity in the sample, which would give a pattern similar to non-

I parallelism, was reported by Truell et al. (1969). However, we believe

g that the quality of the sample is such that this possibility seems

I



I

60
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Figure IV-6. Attenuation at 3.34 MHz for 0 Wedge Angle. A
SReference Attenuation is Obtained by Averaging the First Six Echoes.
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Figure IV-7. Attenuation at 6.00 MHz for 0 Wedge Angle.I A Reference Attenuation is Obtained by Averaging the First Two Echoes.
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i unlikely. However, this pattern Is very similar to the results of

varying wedge angles. The accuracy of wedge angle measurements was

I limited to 3 x 10"5 radians. If we now assume that a wedge angle of

2 x 10" radians is present here, then (from Eq. (2-22)) after three

reflections the incident angle of the wave on the receiver will have a

magnitude comparable to the smallest wedge angle in the sample. A con-

clusion which could then be drawn from the behavior of the later part

of the echo train is that, given enough reflections, the data seem to

be more sensitive to wedge angle variations than the optical measure-

ment method described in Chapter II.

These studies, then, allow us to make two important statements.

First, for extremely small angles the early part of the echo train

Iallows one to conclude that the diffraction correction is valid for up
to six echoes at frequencies as low as 3 MHz, and up to two echoes for

frequencies as high as 6 MHz. Second, the later part of the echo train

follows the behavior predicted for any wedged sample: yn' the effective

incident angle of the receiver, increases at each reflection so that for

higher frequencies the smaller wavelength makes the deviation from an

exponential echo train more noticeable.

C. APPLICATION OF THE PLANE WAVE GEOMETRICAL CORRECTION

lI It is clear from Figures IV-4 and IV-5 that the magnitude of the

[apparent attenuation is strongly influenced by the value of wedge angle.
Since the diffraction correction does not take into account the change

I in wedge angle, an attempt is made to solve this problem by the use of

the Truell and Oates correction function H(yn) given in Eq. (2-27).I

I
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I The amplitude values are first corrected for diffraction. From these

values, a diffraction corrected attenuation (given by DBCD in

Appendix B) is obtained. Then the diffraction corrected amplitude

i values are recorrected by using the Truell and Oates correction

function. The attenuation obtained from these recorrected values (given

I by DBCPG in Appendix B) will be referred to as attenuation corrected

for plane wave geometry. The plane wave correction model is now applied

I to fluctuating patterns such as the one shown in Figure IV-3 (p. 55).

The diffraction corrected attenuation as well as the attenuation

corrected for plane wave geometry are shown in Figure IV-8. As can be

seen from these plots when the fluctuations of attenuation values are

fairly large, as long as the propagation path is less than 2 Zf, the

f plane wave model corrects in the right direction. However, in these

cases it significantly overcompensates for the fluctuations. Examination

of the data reveals that this model improves the prediction of the

[i shape of the fluctuations as we get closer to the Fresnel zone or,

equivalently, as the pressure distribution on the receiver approaches

the plane wave model. This correction was applied to different combi-

nations of frequency and wedge angle and in most cases it overcompensated

I. for large wedge angles and undercompensated for small wedge angles.

[i Calder showed that his correction was quantitatively

Inappropriate for his measurements in solid helium. The results pre-

Isented above agree with Calder. Even though the Truell and Oates model

gives the approximate shape of the observed fluctuations, it is not

possible to use it for quantitative corrections in our case.
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Figure IV-B. Attenuation at 4 MHz for a Wedge Angle of

11.75 x 10-3 Radians Using the Truell and Oates Correction.
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D. APPLICATION OF THE DIFFRACTED WAVE

i GEOMETRICAL CORRECTION

The diffracted wave geometrical correction is now applied to the

I uncorrected farfield data and the values of u(n) (given by the variable

I DBCDG in Append- B) versus n are plotted. For comparison in the far-

field and to allow for partial correction in the Fresnel zone, the

(diffraction correction also is given.

Such corrections to the data shown in Figure IV-3 (p. 55) are

Iplotted in Figure IV-9. The diffracted wave geometrical correction

brings the values much closer to the values observed for smaller

wedge angles in Figure IV-4 (p. 57). In Figure IV-9 one observes that

I the correction gives more consistent results than the two previous

corrections and brings the corrected values closer to the values

obtained for smaller wedge angles in the region In which fluctuations

occur. For some specific combinations of relatively large frequency

and wedge angles, such as the one shown in Figure IV-lO for data taken

[at 5.75 MHz, this geometrical correction successfully corrects the

apparent attenuation such that the corrected attenuation closely

[ approximates the reference attenuation value obtained for zero wedge

angle at approximately 6 MHz. In general, for the frequencies in

the 4 to 6 MHz range and wedge angles smaller than 3.82 x 10-3 radians,

the correction brought at least the first one or two echoes of the far-

field into the range predicted from the reference attenuation obtained

i for smaller wedge angles.
In Figure IV-ll a plot of the corrected data at 3.13 MHz for a

43

wedge angle of 3.82 x 10- are shown. As can be seen from the plot,
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I the corrected reference attenuation, at least for the first few echoes,

gives a close approximation of the reference attenuation line. The

correction also was applied at 4 MHz to angles of 3.82 x 10-3 radians

or smaller and in all cases the corrected values of the first one to

three echoes were within 5% of the reference attenuation obtained at

lower wedge angles.

In sunnary, the important points are that (1) for frequencies

nigher than 4 MHz this model corrects partially for the deviation from

I the reference attenuation when the type of fluctuations shown in

Figure IV-9 do not occur, i.e., for relatively low wedge angles; and

1 (2) if the frequency is 4 MHz or lower, then our model successfully

corrects for geometrical attenuation (at least for the first few

I echoes) even for wedge angles as large as 3.82 x 10-3 radians.

I E. CONCLUSIONS

I From the analysis of the data reported here two main conclusions

seem to emerge.

I 1. The large fluctuations and variations observed when either

the wedge angles or the echo number were large enough or the frequency

high enough, cannot be explained entirely on the basis of the diffraction

I model used here. Even though the neglect of the beam displacement

and of the actual pressure distribution seems to invalidate the

I Truell and Oates plane wave model in our situation, the results show

that the Truell and Oates function H(yn) does, in contrast with the

other corrections, take into account the form of the large variations

it
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Iand fluctuations at least when the shape of the wavefrcnt approaches the
gplane wave approximation.

Kinsler et al. (1982) gave a description of similar fluctuations

I and variations. They attribute these fluctuations and variations to

receiver directivity factor Hr (ei), where 8i is the incident angle

l of the wave on the transducer. According to Kinsler, the receiver

directivity factor Hr(6i) is given by the magnitude of the

directivity function H(e) of the receiver when used as a transmitter.

A mathematical justification of this statement is shown in Appendix D.

Then if a plane wave is impinging on a receiver Hr (ei) will be given by

Ithe magnitude of the directivity function of a piston source. If we now

1 take the magnitude of the directivity function of a piston source given

in Eq. (2-20) we obtain the Truell and Oates function H(y n) given in

j Eq. (2-26) since Yn gives the magnitude of ei. Then in our case the

value of the Truell and Oates function seems to reside in the fact that

I it has exactly the same form as the receiver directivity function for a

plane wave impinging on a circular receiver.

We are then led to the conclusion that when the wedge angle or the

I echo number is large enough or the frequency high enough, both the

geometrical attenuation and the receiver directivity significantly

mI affect the measured attenuation. And, in our case, the model of the

receiver directivity factor based on the plane wave assumption can only

be used in a qualitative manner. The important point, however, is that

l the model of the receiver directivity factor gives a plausible physical

explanation of the large fluctuations and monotonic variations observed

I in the echo train.

I
.... F~~~~~~- r ...... ....- r...l ...
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I 2. From the analysis of our data it appears that a geometrical

i correction should be applied to all the amplitude measurements made on

wedged samples when the intrinsic attenuation is desired. Only

the cases when the wedge angle is so small that it cannot be detected by

a method of accuracy comparable to the one used here, is it sufficient,

Iat least for frequencies lower than 6 MHz and for the first few echoes,

Ito use the diifraction correction for parallel faces as geometrical

correction. In all the other cases the diffracted wave geometrical

I correction should be used.

In some cases the geometrical correction is the most significant

I correction and the receiver directivity factor can be neglected. These

are characterized by the fact that the values of amplitude corrected

for geometrical attenuation gives an approximately constant intrinsic

j attenuation. In our experiments they occurred mainly at frequencies

lower than 4 MHz and for wedge angles smaller than 3.82 x lO"3 radians.I
F. SUGGESTIONS FOR FURTHER WORK

I 1. Receiver Directivity Factor

I Probably the most significant improvement to the correction for

nonparallelism would be the definition of a receiver directivity factor

l which could be applied to cases for which the plane wave assumption is

not satisfied. As a secondary investigation, a calculation of the

directivity function in the farfield of a circular source having a

l distribution of the form 2Jl(r)/r was made. The results show that a

considerable decrease in the amount of overcompensation for the receiver

I effects is obtained when this directivity function is used for

I

Ur
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I

correction. Further investigation along this direction probably would

I be fruitful.

2. Correction in the Fresnel Zone

A very useful improvement of the diffracted wave geometrical

I correction would be to extend its validity farther into the Fresnel zone.

This would allow for correction in a region which is commonly

ei.ountered in nondestructive testing situations. The mathematical

difficulty associated with this improvement is a long-standing impediment

to solution of all diffraction problems.

3. The Gaussian Transducer Model

During the course of this investigation it became clear that an

analytical solution based on a radiating element with a diffraction

ffield showing radial symmetry would be difficult to handle. This is the

reason a numerical solution was used. An experimental configuration

I which would lend itself to the use of cartesian coordinates would be

Imuch simpler to model mathematically. The Gaussian transd..cer developed

by Martin and Breazeale (1971) has this characteristic.

[ A theoretical solution of the problem of evaluating the diffraction

field of a Gaussian transducer is included in Appendix E. Experiments

I modeled on this solution would be very interesting.

1 4. Velocity Measurements

As can be seen from Figures 11-9 and 11-10 (pp. 26 and 29), if

the wedge angle or the sample length is large enough significant

variations in the measurements of velocity will occur because of the

I
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variations in the propagation path between echoes. Preliminary results

3 obtained in large steel blocks (20 cm) with large wedge angles (1 to 20)

at a frequency of about 5 MHz showed that significant decreases (up to

1 5%) can be observed In the transit time between two successive echoes.

A study of the variation of velocity measurements In wedged samples

promises to be an interesting field of investigation.

I
I
I
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I
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j APPENDIX A

AN APPLICATION OF THE RECIPROCITY THEOREM

l A. THE RECIPROCITY THEOREM

Let us assume two identical transducers I and 2. Let a volume V

I with closed surface S bound these two sources but not enclose them, as

l shown in Figure A-1. I is the velocity potential for transducer 1

and f2 for transducer 2. If we excite transducer 1 only, the description

I of the oropagation of the wave in volume V is given by:

[ f1 = -K21 (A-1)

and the particle velocity I = Vfl and the pressure P1 = -jwpofI.

Similarly, if we now excite transducer 2 only at the same frequency W,

I: we have:

SV 2 2 = -K2f2  (A-2)

and again, u2 ' Vf2 and P2 = JwPOf2 "

From Green's theorem:

I s (f1v 2 - f2vf1) * fd 41V 2f2" *2 2 l)dV (A-3)

Substituting (A-l) and (A-2) in (A-3) we have:

S"J (P1  2" P2 'U) 
" A dS V (-,K 2 

2 + 42K
2*I)dV. (A-4)
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I V

I
I
I Figure A-1. Theoretical Position of Two Transducers Enclosed in17 a Volume V.
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The right hand side of (A-5) vanishes identically and we have:

s ( P 1 u2 - P2 ;l) " idS = 0

i This is the expression of the principle of reciprocity. Let us now

restrict this theorem to the situation where the closed surface is made

of an infinite rigid baffle of surface SB such that (iu-n) = 0 on SB .

Then the only surface allowed to react to the pressure waves are the

i two transducer surfaces S1 and S2. Then, (A-5) becomes:

I + (P1 U2 " P2 U) " dS = 0 (A-6)

I or equivalently,

f P1  u2 " dS - P dS = 2 "- dS - P1 • dS .

S2 f 2 ulf~ l sl u2 (A -7 )

[Since the original assumption is that one transducer is passive while
the other is active, then when one transducer is active the pressure

Iover the surface of the second transducer is not zero but the velocity
over that surface is zero. This means that the negative terms of

Eq. (A-7) go to zero giving:

I 2 P1 2  ndS" P2  l I ndS. (A-8)

I
I

JzI
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I B. SMALL SOURCES IDENTITY

: IIf the two sources 1 and 2 are small with respect to the

wavelength and located several wavelengths apart such that the pressure

is uniform over each source, then (A-8) when time is considered can be

I expressed as:

u1(t) In 2(t) dS . (A-9)

1We now define the rate at which the volume, in the vicinity of

[ the source, is displaced in function of the source strength Q as:

IQeJwt = f (t) • dS. (A-10)

[ Using the fact that the variation of P is given by Pl(t) = P1 
e  and

Eq. (A-10), we obtain from Eq. (A-9) that

Ql Q2
T. - (A-11)

Therefore the ratio of source strength to pressure for a small source

is independent of the shape of the source.

'I
I
I
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APPENDIX B

A COMPUTER PROGRAM FOR CORRECTING ULTRASONIC

ATTENUATION DATAI
C THIS PROGRAM IS CODED IN F3RTRAN1O LANGUAGE.

IT CORRECTS AMPLITUDE VALUES OBTAINED IN A WEDGED
C SAMPLE WITI A CIRCULAR ULTRASONIC TRANSDUCER.
C IT ALSO CALCULATES THE CORRECTED ATTENUATION

BETWEEN E:40 1 AND N (N<15)

C THE IPUT VARIABLES ARE:

V: VELOCITY OF THE WAVE IN THE SAMPLE (CM/USECI
C F: FREQUENCY (MHZ)
c 0: DIAMETER OF THE PIEZOELECTRIC ELEMENT (CMI

SL: S4MPLE LENGHT (CM)E GAMMA: WEDGE ANGLE (RADIANS)

THE OUTPUT VARIABLES ARE:

• AXXX: AMPLITUDE
DBXXX: ATTENUATION (DECIBELS/CM)

WHERE XXX MEANS:
.- MP: UNCm%:RECTED
C CD: DJ '-ACTION CORRECTEDII :COG: CORRECTED FOR DIFFRACTED WAVE GEOMETRY

CP^,: CORRE6"TED FOR PLANE WAVE GEOMETRY

IMPLICIT D3UBLE PRECISION (M)
DIMENSION AMP(151,ACD(15),ACPG1)tACDG(15)
DIMENSION RMPIIShRCD(15),RCPG(15),RCDG(15
DIMENSION RC(15)tZC(151
COMM 4 PIASLGAMZNWKOMEGAALAMBDECHONO
COMMON RO3tZOtStSRF
PI - 3.1415926
V a 5.840E-1

1o READ l1t20) Ft DSLGAMMA
A - D/2.
If (F.GT.100.01 STOP
ALAMBD * VIF
OMEGA = 2*PI*F
WK .. *PI/ALAMB.

1' 82
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WRITE (5,130) At SL, GAMMAvF
ICOU4dTwlI

20t READ (191431 A04P(ICOUNT)
*IF (AMP(IODUNT).ST.100.0) GO TO 30

ICOUNTzICOJNT,1
GO TO 20I30 N aICOUNT-1
DO 90 lnltN
ECHDNJ a D-LOAT(I)I GAM4 a 2.3*GAMMA*ECH'JO
ZPAR ECHONO*SL*2.O
S a(ZPAR*ALAMBD)/U(A)**2)

% O CALL DJFwOR (CO)
ROO s 0.0
ZO z ZPAR
ACD( II=(AMP(I I)/(CD)
CALL FLUCTJ(HGAM2N)I FARFLD =(D**2-ALAMBD**21/(4*ALAMBD) 6

so5 CALL DSI(0OR (COG)
ACDG(I = AMP(I)/CDG
RCMI - ROD
Zc(I) = ZI iF a SQRTt100**2+ZO**2)/FARFLO
IF (ZF.LT.3.O) GO TO 70
GO TO 80

so ACDG(I a CD(I)
ACPG(J) *ACDG(I)/HGAMN
RcA!) z 0.j iCE!) =ZPAR
GO TO 90

T0 CONT14UE
c WENOWE ORRECT THE FARFIELD APPROXIMATI'I TO 114PROVE

IT CDNVER;ENCE.
IF(ZF.LT*1.5)CF=(ZF-1.)*0.6.0.4
IF(ZF.GT.1.5.AND.ZF.LT.2.ICU=(ZF-1.5)*0.440.7[ IF (ZF:GT.2e0.AND.ZF.LT.2.5)CFu(iF-2.), 3.14*0.9

ACOGIN a 4CDG(Il*CF
30 ACPG(II - ACD(I)/HGAM'l

90 CONTINUE
WRITE (5,150)
DO 103 1 m 1,N
RkiP(I) a 4MP(I)/AMP(lIIRCD(IluACrn/COl
RCPG(Il- A:PG(II/ACPG(1)
XcSQRT(ItC(!)**24ZC(1)**21-SORT(RCII)**24ZC(1)**2)
WRITE (5,1801 Iv&MP(IhvACO(I) ,ACDG(13,ACPG(I)

*IF fI.EQ.1) GO TO 100

UA
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DBMP 2O.O*ALOG1OIRMP(I'flIX
D8CD *23o0*ALOGlO(RCD(1I IX
OCOG a ZO.O*ALOGID(RCDG(I))I X
DBCPG a 20.o*ALOGIOIRCPG(IJ) IX
WRITE 15,170) DBMPDBCDtDBCDGrOBCPG

100 CONT14UE
GO TO 10
RETURN

110 STOP
120 FORMAT (3F8BXvE11.3)
130 FORMAT IIHl,411X#LPEI3.5)1
143 FVRNSAT ( F51
1S0 FORMAT (IXs'THE RESULTS ARE GIVEN AS'/IXOEC40 NUMBER

1 AMP',16X,'ACD,916X,'ACD3G 16XtACPG'I12X,'
2 DBMPIL5XtoDBCD%1l5X,'DBCDG',I5XO'DBCPG')

160 FORMAT 114-,'ECHO 1IvX,4(IPEI6.9))
170 FORM4AT I1H~,8X,4(IPEI6.9))
180 FORMAT (lH-,'ECHG '#129IX94(IPE16.9))

END

- SUOR3UTLVE DlFCOR(CD)

- THIS IS R3:;ERS AND VAN BUREN CORRECTION FOR DIFFRACTION
C
r

IMPLICIT D)UBLE PRECISION (M)
CI)?M434 PIASLGAM2Nt4KOMEGAALAMBDtECHONO
C0OMMON ROOZO@StSRF

MARG-2.*P I/S
CALL THE IN51 FUNCTIONS
0.10 a 1MBSJ0(MARGIER)
0.11 a MMBSJI(*IARG9IERl

10 CD =S2Rr( (OS(MARkG)-DJO)**2+(SIN(MARG)-DjI)**2I

- END

C
SUBROUTINE FLUCTU (HGAM2N)

I.THIS IS TRJELL AND 0 ATES FLUCTUATION CORRECTION

IMPLICIT 03UBLE PRECISION (M)
COMMON P1,ASLGAMZNWKOM4EGAALAM8BDECHONO

r COMMON R30,ZOStSRF
MARG = ABSIWK*A*SINIGAMZN)i
HGAM2N a 1.0
IF INARG.Lr.1.OD-8) GO TO 10
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CALL THE INSI FUNCTION 14MBSJI
OJI * MBSJ1(MARG*IER)

10 HGAM2N a ABS(2.O*DJl/MARGl

RE TJ R4

END

SUBROUTINE OSKCOR (COG)

E THIS IS THE DIFFRAC TED WAVE GEOMETRY CORRECTION

IMPLICIT DJUBLE PRECISION (M)
COMMON PIASLGAM2NWKOMEGAALAMBDECtlONO
COMMON R)0,ZOtSSRF
EXTERNAL FARP,FARPO
ROO E.HJO*SL*SIN(GAM2N)

TAN a SIN(3AM2N/2.)/COSIGA12N/2.1
ZO = 2.*E:HONO*SL-ROO*TAN

C CALL THE IMSI NUMERICAL INTEGRATION FUNCTION OBLINT
- WMERF FARP AND FARPD DEFINE THF PRESSURE AT A

r POINT (RTHETA) LOCATED IN THE FARFIELD.

- RI =0.0

R? A
AERR a I.OE-3
THETAI D .0
THETA2 =2.*PIICzDBLINT ( FARPRl vR29THETAl ,THE TA2,AERRERRORI1ER)
CD=DL INT(FARPDtRl 9R29 THETA 1,THET A2t AERR9 ERRJRp IER I
SRF - PI*(A**2)

COG = SQRI((C/SRFI**2.(CD/SRFI**2)
RETURN
END

REAL FUNCTION FARP IRTHETA)3 IMPLICIT D3UBLE PRECISION (Ml
COMMON Pl.ASLGAM2N@bEKOMEGAALAM3DECINO
COMMON R309lOt 5,SRF
RO a A8S(SQRT(IIROR*COS(THETAl*COS(GAM42NI

lI**2)+(R*SIN(THETA 3)6*21)

DIR-I1.
OROZ a SO~RT(RO**24Z**2)
MARG a WK*A*ROIOROZ

OJI. - M?4BSJI(MAR&,IERl
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I IF(MARG.GT. I.D-B)DIR=Z.*DJI/M4ARG
PAXISz2*SIN((PJALAMB8D)*(SQRT(A**2.OROZ*e21-3)R0Z3)

3 FARP a DIR*COSIWl(*OROZI*R*PAX!S
*10 CONTINUE

RETURN
EN DI REAL FUNCTION FARPD (RiTHETA)
IMPLICIT D)UBLE PRECISION (M)
COM40N PlIASLGAMZNWKOMEGA,ALAMBD,ECHDND
COMMON ROO tZ09,StSRFIR RD ABS(SQRT(((ROO+R*COS(THETA)*COS(GAM2N)
l)**21.(R*SINITHETA) 1**2))
Z a Z - R*COS(THETAl*SlNIw AM2N)
OROZ SQRT(RO**24+Z**2)
MARG WK*A*FRO/OROZ

Wt MMBSJI(MARGlIER)I IF(MARG.Gr. 1.O-8JDIRD=-2.*DJLINARG
PAXIS=2*SIN((PL/ALAMBD)*(SQRT(A**2+OROZ**2)-3RDZ)I
FARP-3 a DflO*SIN(WK*OROZI*R*PAXIS

10 CONTINUE
RE TJ R

I END
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I APPENDIX C

PHASE CORRECTION FOR VELOCITY MEASUREMENTS

As pointed out by many authors (McSkimin, 1950; Williams, 1958;

Papadakis, 1967; Truell, 1969), when a wave is reflected from an inter-

I face a change of phase occurs. The phase shift is a function of the

relative velocity, and the mechanical impedance of the two materials in

l contact at the interface as well as the frequency of the wave. This

means that we have to correct for two interfaces: the sample-

couplant interface and the couplant-crystal interface. However, as

I mentioned by Williams (1958) and Papadakis (1967), the effect of the

bond material can be neglected when quartz crystals of frequency of

1 10 MHz or lower are wrung on the surface of a solid. Therefore, the

only interface of concern here is the crystal-sample interface. A

correction AT for the measured transit time T was given by Papadakis

r(1967) for a single transducer pulse echo overlap method which is very
similar to the method used here. Neglecting the coupling layer, the

condition for overlap gives

T - IIf o
Tm~0

where fo is the resonance frequency and the correction for transit time

in the bond is

IA y1/2rf1

87
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jwhere yi is the phase shift given in radians for frequency f1 . As

pointed out by Williams (1958), the factor y changes signs depending on

I whether the frequency f is higher or lower than the resonant frequency

I fo" Furthermore, when the coupling layer is negligible, y is

proportional to the frequency. Therefore, by dividing the correction

I AT into two parts, one for frequencies higher than f0 (ATG) and one for

frequencies lower than f0 (ATL) and taking the average (iT) of both

(since about the same number of mTnima were observed on both sides of

I fO), a good indication of the magnitude of T can be obtained. That is:

whe T = (ATL + ATH)/ 2

I where

ATL = +YL/
2TfL

I ATH = +YH/2wfH

[ and

YH = +12 tan 1 al

YL = - 12 tan-1 al

where
z t

a -~ [tan eJI

I
I
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I The factor z refers to the mechanical impedance and the indices

I t and s refer respectively to the transducer piezoelectric 
material1

and the sample.2 The factor et is given by:

I t = 2 x w x f x t/vt

I where I is the crystal thickness and v the velocity of propagation of

the ultrasonic wave in the crystal.

Applying the correction, it was found that the time correction

I ATL applied for the average low frequency fL of the 21 sets of

measurements was approximately -0.1%, -ihereas the correction of the

l time due to the frequencies higher than the center frequency ATH , using

i the average high frequency fH' was approximately +0.12%. The result

of these two corrections is that they almost exactly compensated for

I each other and the average correction AT is about 50 times smaller than

the standard deviation of the measurement.

I The values of the parameters used are listed in Table C-1.

I
I
I

It l The values of zt, it, and vt were obtained from Krautkramer

I 2zs was obtained by evaluating the density Ps of the sample and
using the equation zs - vs x ps where the previously uncorrected
velocity v was used as vs.

I
At
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i TABLE C-1

PHASE CORRECTION DATA

fH 4.550 MHz

I o 3.580 MHz

( z 4.003 MHz
zt/z s  0.3200

It 0.07175 cm/ue

YL - .2040

I H = e.3038

T = 8.5042 uisec

ATL = -9.069 x TO 3 psec

ATH = +10.626 x 10.3 psec

& T = 7.783 x 10~ isec

AT/T - 0.009%

II

~Ii/
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i APPENDIX D

THE RECEIVER DIRECTIVITY MODELI
The magnitude of the mechanical deformation of the piezoelectric

I element is dependent upon the distribution of the pressure vectors on the

receiver surface. If one assumes that an infinite plane wave is impinging

on the receiver, then the magnitude of the pressure deformation on the

$ receiver 1PIr can be related to the average maximum pressure of the wave

by the use of a directivity function Hr(ei) where ei is the incidence

angle:

IPIr = Hr(ei) • (D-1)

JI Kinsler et al. (1982) report different applications of the

directivity function and show mathematically that the reciprocity theorem

can be invoked to prove that the directivity factor of & receiver is

j! given by the magnitude of the directivity function of the same vibrating

element when used as a transmitter. A mathematical proof as applied to

a plane wave propagation in shown here.

We now assume the sources 1 and 2, described in Appendix A, to be

large compared to the wavelength and made of an active rigid piston

located in an infinite rigid baffle such that:

I I n (D-2)

then Eq. (A-8) becomes

91I_ _ _ _
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u2 <(P)I> S2  2) = uI <(P) 2> S1 (S1) (D-3)

Iwhere <(P)i> Si means the pressure P integrated on the surface S when

only the transducer I is active. Furthermore, we will assume that: the

m two transducer acoustic axes both make an angle e with the wave coining

Sfrom the other transducer; the distance R between the center

of the two transducers is large enough that Fraunhofer diffraction

conditions exist; andthe ratio ;is so small that the wave originating

on Si appears plane when it reaches the transducer S. This is shown

Iin Figure D-1. The pressure felt on element 2 due to the source 1

<(P)I> $2 can be defined as a function of the pressure field of P1
called <P1(R,e)>s2 where e is the angle between the aciustic axes.2I
Since we have plane waves, then this pressure field is constant over

the surface S2. Then:I
<P1(Re)>S2 = PY(e) x A(R) (D-4)

where A(R) is a pressure amplitude function. Similarly[
<( = P2(e) x A(R). (D-5)

I j Replacing (D-4) and (D-5) in (D-3) gives

I A(R) u2 PI(e) S2 A(R) ul P2(e) Sl (0-6)

I

•1
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i
I
I
I

.. .n.. . .
S-S

-S2

I 
- S . -" " .j

Figure D-1. Schematic Showing the Relative Position of the
i Transducers S 1 and S2 and the Incident Angle 8 of the Incoming Plane

Wave.

I
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I In Figure D-2 both acoustic axes of the two transducers are coincident,

i then (D-6) transforms to:

A(R) u2 P1 axis A2 = A(R) u, P2axis A (D-7)

I The magnitude of the ratio of (A-16) over (A-17) gives

I IP(et) P2(,t)I'1x. = I% ,,- *

axis axis

IIf we now define a directivity factor Hi(e) as

I H(e) = (e) (D-9)
I laxisl

i then replacing (A-18) in (A-19) we have

I Hl (e) = H2 (e) (D-1O)

I Since this equation must be true independent of which transducer is a

transmitter and which is a receiver, and since both transducers are

I identical, then we must conclude that the receiver directivity factor

H(e) is the same as the transmitter directivity factor.

, A,

i aJ.f , . ..F - I ...r. .



II

II
I
I

Inn

Figure D-2. Schematic Showing the Relation between Two
Transducers S1 and S2 which Have Parallel Acoustic Axes.
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i APPENDIX E

THE GAUSSIAN TRANSDUCER

I Let us assume that a pressure disturbance has a Gaussian form

described by the relation:

I ~ p2/T02 (-1

I P(p,O) = P0 e (E-1)

g where p is the radial coordinate of a cylindrical coordinate system

originating at the center of the source. T0 is the radius for which the

l amplitude decreases to I/e of its maximum value. Now, let this disturb-

ance propagate in a lossless fluid a distance z. Since the Fourier

I transform of a Gaussian distribution is a Gaussian distribution the

m pressure P(p,z) should have the form of Eq. (E-l).

P(pz) = P(z) e (E-2)

I Then from the principle of conservation of energy:

S~f P(p,O) P(p,z) (E-3)

or equi valently,

I  /TO -p /Tiz) if 0o od -Jo ze-o  i
dp Pe lp(E-4)I

1 96
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where Pz is the pressure on the axis of propagation at a distance z from

I the origin. Equivalently then,

I PO 0ep/Tiz) dp

I 
z = e-P2 /To2 T 0

From Abramowitz (1972):

I
f e'p2/Tdp = T 'w/2. (E-6)

IThen replacing (E-6) in (E-5)

P 0 TC E-7)
z 0

I From Haselberg and Krautkramer (1959):

Pz POW (E-8)

where o(z) = [(zx/T2)2 + 31/2. Then replacing (E-8) in (E-7):

T(z) = *(z) T 0 (E-9)

I Replacing (E-9) and (E-8) in (E-2) we obtain:

P(pz) " e (E-10)

I(
m. l I- Sec ...I '
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, I 1
= We now assume a plane wave propagation. Then

IPO P 2 /02(Z)To 2 t~ z

P(p,z,t) U -(z7 e 0 e(wt-kz) (E-11)I
w the magnitude of the average pressure on the receiver is obtained by

integration of (E-ll):

P -P2/ A2(z)T0
2

IP(z)l = °0 e  (Z) e-kzds . (E-12)I
Following the same process described in Chapter II we will apply

I this unidirectional wave propagation model to a multiply reflected wave.

We now assume that the dimension of the receiver in the y direction is

small enough that the amplitude does not vary significantly along the y

i dimension of the receiver. Then Eq. (E-12) becomes:

p x P(x)2/ 2(z(x))TO 
2

IP(z) x d(z(x)) e-ikz(X)dx (E-13)

where Ax is the length of the receiver electrode. Now we replace the

value of z(x) and p(x) by the coordinate system developed in Chapter II.

Then -JP z P0 f Ax/2 -(xcos(n)-P(0,0)n) 2/A2(z(0,0)n+xsin(yn))I J(Z)n ax _,&' x/ 2e

I 1 l~y) e'Ik(z(O'O)n+XSin(Yn))d . (E-14)$(z(OO~(0,n + xtnin))

S1Acc gto Haselrg ind Krautkramer (1959) this introduces an

error on P smaller than e'a /To where a is the radius of the piezo-
electric element.

i i l I l . _,_ m:Lmil Tmrl Tl~m -- ,who " I
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We now approximate *(z(OO)n + xsln(yn ) by O(z(OO)n).1  Then (E-14)

becomes

POz ~ 0 'x eX(Cos2(yn)/f2(z(.O)nj)

I IP(z)I = Ax *(z(O,O)n) f_,x/ 2

I eX(isin(yn)2cos(yn )p(O,O)n/
2(z(OO)n))

e'(ikz(OO) n+p2(0,0)n)dx •(E-15)

From Abramowitz (1972):

B2-ACI Je( x +2Bx+C) = e/2 / e erf(,/x + B (E16)

Then (E-15) becomes

I B2_AC

IP(z)I - e
2Ax *(z(O,O)n)v'"

I x erf(C x + --) Ax/2 (E-17),vE l-Ax/2 (-7

I where
A = cos2 (Y)/d 2(z(O,O)n )

B - I sln(y n ) - 2cos(Yn)P(O,O)n/ 2(z(OO)n
2

C - ikz(OO)n + P2(OO)n

1This approximation for a steel sample, at a frequency of 4 MHz,
and for y a 7.45 x 10-3, was calculated to Introduce an error of less
than 1.5% on the pressure value for n a 1 and the error decreases as n

I increases.

II IIII
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I The circular piezoelectric element and the mechanical coupling

Itechnique described in Chapter III 4re also used wfth the Gaussian
transducer. The main difference between the Gaussian transducer and the

previously described transducer is that now the source electrode is a

rectangular strip of aluminum wrung onto this piezoelectric element.

By positioning the circular piezoelectric element such that the

rectangular source electrode has its length normal to the slope of the

face it is then possible to use two smaller rectangular electrodes as

receiver by placing themon either side of the source electrode such that

the pattern of electrodes looks like a cross. Then the displacement and

rotation of the propagating wave which occurs strictly in the pzz plane

j can be handled by means of the cartesian coordinates as described above.
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